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Abstract. Conventional non-relativistic quantum electrodynamics is used to calculate 
position-dependent corrections to the magnetic moment of an electron a distance z from a 
perfectly conducting surface. To leading order, -e3/32m2z and Sp, =O.  These 
results follow easily and without any special pleading from the usual Foldy-Wouthuysen 
Hamiltonian, and are validated by necessarily much more elaborate relativistic calculations 
using either the full quantum field theory, or Dirac single-particle theory. Together with a 
recent non-relativistic account of the free-electron anomalous moment by Grotch and 
Kazes, such agreement is interpreted as a plausible indication that non-relativistic quantum 
electrodynamics is at least qualitatively adequate to deal with magnetic radiative effects, on 
the same footing as it can deal with non-magnetic analogues like the Lamb shift. 

1. Introduction 

It has long been the common view that explicitly relativistic considerations are essential 
to account, even qualitatively, for the anomalous magnetic moment 6 p  = e3/47rm of 
the free electron. (See for instance Feynman (1961); for a contrary view, see 
Arunasalam (1969).) Ever since Welton’s (1948) paper, simple non-relativistic 
approaches were believed to yield the wrong sign of Sp. If this were true, it would force 
any correct heuristic explanation of Sp onto an altogether different footing from, say, 
the Bethe theory of the Lamb shift (see e.g. Power 1964); and it would largely sap one’s 
confidence in non-relativistic quantum electrodynamics as an intuitive guide to magne- 
tic effects. However, the common view has recently been disproved (Grotch and Kazes 
1977), stemming as it did from failure to express the observed total magnetic moment 
p = e/2m + Sp in terms of the observed mass m. Once this is done, and if a physically 
reasonable cut-off is adopted, the correct sign and order of magnitude of 6 p  follow from 
an entirely straightforward calculation proceeding without any special tricks from the 
conventional Foldy-Wouthuysen (FW) Hamiltonian H(Fw). 

The present paper aims to provide further evidence for the (approximate) validity of 
the non-relativistic approach even to magnetic effects. To this end we consider an 
electron moving freely outside a perfectly conducting half-space occupying the region 
z S 0 and subject to an external (unquantized) constant homogeneous magnetic field d. 
The boundary conditions at the surface of the conductor constrain the normal modes of 
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the quantized Maxwell field; thereby they are responsible not only for the usual 
spin-independent ‘dynamic image potential’ (see e.g. Barton 1977) but also for a 
position-dependent correction to the electron magnetic moment. To leading order in e, 
and in the inverse distance z-’  of the electron from the surface, such magnetic 
corrections are proportional to (e3/m22)u21?, and ( e3 /m2z )u l ( .  811, as can be seen from 
dimensional and invariance arguments (the suffixes z and I( identify vector components 
normal and parallel, respectively, to the surface); they are obvious generalizations of 
the energy -Spa. B for an isolated electron. 

Although these effects are somewhat artificial, and unlikely to become observable in 
practice, they are observable in principle, and have the advantage, as compared to Sp 
itself, of being cut-off independent and mathematically well defined, even non- 
relativistically. In 0 2 we calculate them from H(Fw); the status of these results is 
established in 9 3, which re-derives them to leading order from relativistic theory, as 
briefly as possible. Before the rehabilitation of the non-relativistic approach to 
magnetic effects, only this incomparably more laborious method could have been 
trusted even qualitatively; see Babiker and Barton (1972) for a closely related relativis- 
tic calculation performed under just this mistaken impression; (its result was incorrectly 
interpreted in that paper and is commented on in 9 4 below). In 9 4 we outline our 
conclusions. 

2. Non-relativistic calculation 

The standard non-relativistic Hamiltonian, correctly to order m-2, is 

1 e e 2  H(Fw) = Hrad + - (p - eA - e A  )’ - - U . ( B  + 8)  - - 
2m 2m 42 

Here, the electron coordinate is r = (p, 2); -e2/& is the electrostatic image potential, 
and -ei/4z the corresponding electric field; the external (constant) magnetic field B 
derives from the vector potential 

A ( r )  = iB x r ;  (2.2) 
A, E = -A, B = V X A are second-quantized field operators, with A given by (Barton 
1974, see Barton 1977 for a discussion of the choice of gauge): 

In (2.3), w = (kz+12)1’2; the a’s are annihilation operators, i.e. [as(k, l ) ,  ai@’,  l’)]= 
6s,16‘2’(k - k’)6(1- 1’) and HC stands for Hermitean conjugate. Finally, in (2. I), Hrad is 
the Hamiltonian for the radiation field in absence of the electron: 

00 

Hrad = (m dl  d2k oai(k,  l)us(k, I ) .  
s = 1 , 2  0 -CO 

(2.4) 
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The only unconventional feature of H(Fw) is the absence of a Darwin term; this is 
discussed briefly at the end of Q 3, though it is irrelevant to the effects we are pursuing. 

We consider an electron described by a quasiclassically moving wavepacket which 
does not impinge on the conductor during the experiment; as explained in the 
introduction we require those terms in the energy which are: (i) spin-dependent; (ii) 
linear in a;  (iii) of order e 3 ;  and (iv) of order m-’. Inspection of (2.1) and a little 
reflexion show that there are only two such contributions; first, the spin-orbit (SL) 
coupling from the last term in (2.1), 

e 3  * e 3  
A E S L ( ~ ~ ) = - v u . i ~ A = - -  16m z 32m2z U11 4 

and second, the second-order perturbation stemming from interference between the 
couplings - e o .  B/2m and e’A . A/m of the electron to the quantized radiation field. 
Writing A and B symbolically as XA(uAAA +a:A:) and CA(u,B, +a:B,*), with BA = 
V x AA, we require the spin- and z -dependent parts of 

Using the explicit expressions for AA from (2.3), and for BA, and writing 
5;“ d o  w . . ., we find after some straightforward manipulation 

dk k . . . = 

e 3z 

4m n o  
AEint(~w) = 7 oll . ill Im dl 1 sin(2lz) la 

The divergent upper limit of the w integral enters only as a coefficient of S’(22),  and we 
drop it because it is a contact interaction ineffective while the electron remains outside 
the conductor. For the lower-limit contribution -In 1 we use 

i a  - loe dl 1 sin(2lz) In 1 = (2.7) 

this and other similar technical devices are discussed elsewhere (Barton 1974, 1977). 
Thus one Ands 

which combines with (2.5) to give the end result 

(2.9) 

In other words the position-dependent changes in Sp are, to leading order, 

SPL = 0, Spl~= -e3/32m2z. (2.10) 

3. Relativistic calculation 

As motivated in the introduction, this section re-derives (2.9) as briefly as possible from 
the correct relativistic field theory (QED). We also show, at minimal extra cost in 
computation, that the same expression results also from relativistic single-particle 
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theory (SPT) (see Grotch and Kazes 1976), and shall comment on this coincidence in 0 4. 
At the end of the present section we discuss briefly the provenance of H(Fw), equation 
(2. l), which underlies the non-relativistic calculation. 

The complete Hamiltonian is written as 

H = Ho +He,  +Hin,. (3.1) 

Ho contains Hrad (equation (2.4)) and the Hamiltonian for the electron in presence of 
the magnetic field B. Thus 

Ho(SPT)=Hrad+pm + f f .  Z, (3.3) 

where TT = (p - eA), and I,b is the usual second-quantized electron field operator. 
In QED the electrostatic part is 

where s E (x ,  y ,  - z ) .  In SPT we can drop the Coulomb self-energy for an isolated 
electron (which is independent of position and momentum) and write 

H,,(sPT) = -e2/4z. (3.5) 

Finally, the couplings Hint to the quantized radiation field are 

&,(QED) = -e dr  I,bta. A@, (3.6) 

(3.7) Hint(sn) = - e a .  A. 

I 
Mass- and wave-renormalization terms are position independent and have been 
dropped because they play no role in the order -e2  z-dependent expressions of interest 
here. 

To calculate the static image potential we start with a on?-electron packet state, as 
discussed in 3 2. Once we have extracted operators linear in B the state can be assumed 
to be at rest and therefore for purposes of carrying out perturbation theory we need only 
the unperturbed eigenstate In), with 

(a .  ?T +pm)ln) = &In). (3.8) 

We have found it convenient to set up the calculation in a way which parallels the 
anomalous-moment calculation of Grotch and Kazes (1977), separating the energy 
shift into an electrostatic part U,, and a part AEint due to the quantized radiation field. 

The z-dependent parts of the shifts AE,, may be shown to be given by 

dl d 2 k T ( n (  e-2i"(A+(.rr-k - i Z ) + L ( m - k  -2Z))ln) (3.9) 
1 

AE,,(sn)= -7 

and 

AI~,~(QED) = -- 1 dl d 2 k z ( n J  e-Zi"(A+(.rr-k-i~)-A-(.rr-k-2Z))Jn), 

4w e 2 j  w 

1 
(3.10) 

472 
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where the projection operators are 

E ( n  - k  - 2 l ) * [ a .  ( w - k  -21) + p m ]  
A*(n - k -21) = 2E (n - k - 21) 9 (3.11) 

and E(n - k -21) = +{[a. (w - k -21) +/3m]2}"2. In the above expressions all three 
integrals run from -a to +a. These shifts simplify to 

and 

a .  ( w - k - i l ) + p m  
A E e s ( ~ ~ ~ )  = -7 dl d2k 2 n 4ll " I ( 1 ( E ( n - k - 2 1 )  

(3.12) 

(3.13) 

Let us now turn to the expressions for AEi,,. The difference between SPT and QED 
appears in the structure of the electron propagator (Grotch and Kazes 1976). For 
brevity we write Mint( +) &!?,,,(QED) and AEint ( - )  AEint (sn) .  Then by standard 
second-order perturbation-theory techniques we can show that the energy shifts are 
given by 

k 
sin(1z) - i - cos(1z)) 

w 

(3.14) 

The sines and cosines are rewritten in terms of complex exponentials which act as 
momentum shift operators. We obtain for the z-dependent part of the energy shift 

mi,,(*)= -7 dl d 2 k - ( ( n I a . P l  e-*"'S,(.sr-k-fl)a.Pl(n)' 
1 

4T e 2 1  w 

+(nla. 4, e-2i'zSh(n - k -2l)a. li21n)), 

with PI = k̂  x 2, P 2  = $1 -ik)/w, P 3  = (Ll +ik)/w, and 

h+(n - k -21) A-(n-k -21)  S , ( w - k - f l ) =  + E , - w  -E(W-k  -21) E,, * U  + E ( n - k  -21)' 

(3.15) 

(3.16) 

Equations (3.12), (3.13) and (3.15) constitute the starting point for the relativisticsm-or 
QED calculation of z-dependent corrections to the magnetic moment, as well as for 
z-dependent corrections in the absence of a B field (which we do not derive here). 
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To sufficient accuracy the energy eigenvalue E,, used in the calculation is given by 

e - 1  
2m 2m 

E, = m -- (u. B )  +- (n2), (3.17) 

but when the end results are applied to quasiclassical wave packets any effects due to 
(lr2)/2m contribute only when the electron is in motion. Hereafter these motional 
effects will be dropped from E, since we are interested only in the static image potential. 

We discuss briefly the calculation of AE,,(QED) to illustrate the procedure used. To 
order l / m '  we may replace the term in large parentheses in equation (3.13) by 

(3.18) 

In making this expansion we realize that CY is of the order l / m  since in equation (3.13) it 
couples the upper and lower components of the Dirac state vector. Our procedure is 
now to reduce the Dirac matrix elements to Schrodinger matrix elements. To carry this 
out we express the Dirac state vector In) in  terms of the Schrodinger state vector Ino) 
using the relation 

(3.19) 

and the normalizations (n  In) = 1 = (nolno). The normalization constant N has a 
momentum-dependent piece, which we drop, as well as a &-dependent part. Thus 
N 2 =  1 + e ( a .  B)/4m2.  

Using equations (3.13), (3.18) and (3.19) we can extract the static magnetic-field 
dependent energy shift of order l /m2. The calculation is straightforward but consider- 
able care is needed in maintaining the order of operators and in extracting the static 
contribution?. We find that the z-dependent magnetic-field correction from equation 
(3.13) is 

(3.20) 

Thus we have a magnetic-field-dependent potential of - e 3 q .  ii11/32m22 arising from 
the electrostatic interaction in field theory. The SPT result has also been evaluated to 
order l / m '  and gives exactly the same result: 

e 3  
AE,JsPT)= no -- ( I 32m2z (3.21) 

t As an example of the sort of difficulty which can arise consider the matrix element of e-2"zu. p in a packet 
state. To extract the momentum-independent or static portion we rewrite the operator as i{e-2i'z, a . p } +  
ge-*'", U . p ] .  The anticommutator can be shown to give a contribution which is proportional to the particle 
velocity whereas the commutator gives a static contribution. If the same operator was evaluated in a 
momentum eigenstate by applying the operator p directly to the state, the wrong answer would emerge since 
the static contribution would be missing. 
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Next we turn our attention to the contributions arising from equation (3.15). The 
propagation functions may be considerably simplified since again we are only interested 
in energy shifts of order l /m2.  To this accuracy we can write 

(3.22) 

We note that the difference between SPT and QED resides entirely in the difference 
between S ,  and S - .  Since this difference is independent of 2, and already of order 
l /m2,  we expect to obtain the same result in both theories. 

The calculation using equations (3.15), (3.19) and (3.22) is straightforward but 
tedious. Again some care is necessary for extracting the static terms. We find 

(3.23) 

Combining this result with the electrostatic contribution we obtain the total magnetic 
potential 

(3.24) 

This leads to exactly the same magnetic-moment correction as that obtained in equation 
(2.9) using the much simpler FW reduction. 

We end this section with a brief comment on the derivation of H(Fw) (equation 
(2.1)) from the relativistic SPT operator used above: 

H(SPT) = Hrad+pm +a. (p -eA - e i )  -e2/42. (3.25) 

To H(SPT) one applies the standard sequence of canonical transformations U =  
. . . U2U, (Foldy and Wouthuysen 1950) beginning with U1= 

exp[pa.  ( p  -eA -eA)/2m]. To our order, one obtains 

1 
UH(SPT)U-1=m+H(FW)--v2 8m2 m 

(3.26) 

The third term is the familar Darwin interaction stemming from the image potential 
-e2/4z in (3.25). The feature to watch is that U fails to commute with Elrad; this is 
responsible not only for the familiar appearance of E = -A in H(Fw), but also for the 
less familiar fourth term in (3.26). For an isolated electron this is a position- and 
momentum-independent constant which can be dropped because, like the rest-mass 
energy m, it plays no further role in non-relativistic contexts. But in our case the term 
has a 2-dependent component which is easily determined once we write it, in the 
symbolic notation of P 2, as 

On evaluation it is found precisely to cancel the Darwin term. This completes the 
justification of the Hamiltonian H(Fw) used in § 2. 
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4. Comments and condusions 

Our central result is that the magnetic moment of a free electron near a perfectly 
conducting surface suffers the anisotropic and position-dependent radiative corrections 
(2.10), which are correct to leading order in e' (i.e. to overall order e 3 )  and to leading 
order in l /mr  (i.e. to overall order l /m2z) .  We have no simple explanation why Spz 
remains zero to this order. A relativistic (and difficult) calculation of such magnetic 
effects for an electron between two conductors was reported earlier (Babiker and 
Barton 1972). The results in that paper, though correct in the Dirac (four-component) 
representation, were not reduced as they should have been to the Schrodinger (two- 
component) representation. When this is done (along the lines of 0 3  above), the 
leading magnetic-moment correction changes from isotropy (proportionality to U. 6) 
to proportionality to UII . 611, essentially because the image potential -e2/4z in the 
Dirac representation spawns further spin-dependent terms on reduction to the 
Schrodinger representation. After such reduction, these earlier results agree with those 
reported here in the appropriate limit when one conductor recedes to infinity. 

The precise agreement in leading order between relativistic QED and SPT is 
unexpected. It will certainly not persist to higher orders in e', because QED never needs 
cut-offs while SPT does; nor is it a general feature of all such magnetic calculations to 
order e', as witness the expressions for the usual magnetic moment of an isolated 
electron (Grotch and Kazes 1977). We have not performed the calculations needed to 
establish whether, to leading order in e', the agreement persists to higher orders in 
(mz)-'. On the other hand, the agreement between SPT and the non-relativistic result 
could have been foreseen, because H(Fw) is unitary-equivalent to H(sPT). 

Accordingly, what we deem most noteworthy is not that the non-relativistic 
approach gives the leading term exactly, but that, without invoking any ad hoc 
arguments, it gives an approximation to the overall result which is qualitatively 
adequate as to sign, order of magnitude, and type of anisotropy. Comparison be twen 
the formalisms of 00 2 and 3 makes our second point, that the non-relativistic approach 
is incomparably simpler. The adequacy of the position-dependent radiative corrections 
calculated here, and of those in free space (Grotch and Kazes 1977), makes it plausible 
that non-relativistic quantum electrodynamics is competent to deal with radiative 
corrections to magnetic effects at least to a rough first approximation, in the same sense, 
and in the same way, in which it can deal with analogous non-magnetic effects like the 
Lamb shift. Its precise quantitative limits of validity remain to be explored, but are of 
less practical interest, because for demonstrably accurate expressions one must in any 
case fall back on the full relativistic field theory. 
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